Math Circles 2023

Grover's Algorithm I

John Donohue \& Sarah Meng Li

Acknowledgement: We are very grateful to Dr. John Donohue for sharing the slides with us. This was created for Quantum School for Young Students (QSYS) 2022.

The Quantum Realm

Old-Hat Quantum

Quantum science has been around a long time, and has already produced many key technologies.

The Institute for Quantum Computing at the University of Waterloo

32 independent research groups
Over 150 graduate students
Representation from:
Physics / Chemistry / Electric Engineering / Computer Science Pure Mathematics / Applied Mathematics / Combinatorics \& Optimization
www.iqc.ca

What makes quantum difificult?

Reason \#1:

It's hard to "see"
Reason \#2:
It involves math

$$
\begin{gathered}
\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi(\vec{x})+V(\vec{x}) \psi(\vec{x})=E \psi(\vec{x}) \\
U|\psi\rangle_{A} \otimes V|\phi\rangle_{B} \\
U \otimes V=\left[\begin{array}{llll}
u_{1} v_{1} & u_{1} v_{2} & u_{2} v_{1} & u_{2} v_{2} \\
u_{1} v_{3} & u_{1} v_{4} & u_{2} v_{3} & u_{2} v_{4} \\
u_{3} v_{1} & u_{3} v_{2} & u_{4} v_{1} & u_{4} v_{2} \\
u_{3} v_{3} & u_{3} v_{4} & u_{4} v_{3} & u_{4} v_{4}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} V & u_{2} V \\
u_{3} V & u_{4} V
\end{array}\right] \\
A=\left(E_{g}\right) \times|g\rangle\langle g|+\left(E_{e}\right) \times|e\rangle\langle e| \\
P(\phi)=|\langle\phi \mid \psi\rangle|^{2}
\end{gathered}
$$

Today's Session

- Review Complex Numbers
- Introduce Vectors
- Motivate the Grover's Algorithm

Grover's Algorithm

Search in an unstructured database

FROM O(N) TO O (\sqrt{N})

Unstructured Search

Suppose you are given a large list of N items. Among these items there is one item with a unique property that we wish to locate; we will call this one the winner w. Think of each item in the list as a box of a particular color. Say all items in the list are gray except the winner w, which is purple.

Techniques

AMPLITUDE AMPLIFICATION \& GEOMETRIC INTERPRETATION

Big Picture

Phase kickback in Grover's oracle

Amplitude amplifications

Amplitude amplifications

Amplitude amplifications

Grover's Oracle + Diffuser

Amplitude amplification stretches out (amplifies) the amplitudes of the marked items.

It shrinks other elements' amplitude.

Tinatero watertoo IQC=
 THE POSTULATES OF QUANTUM MECHANICS

The terms "real" and "imaginary" [numbers] are relics from the days when these concepts had not been formalized, were imperfectly understood, and were generally rather mysterious.

They have quietly been de-mythologized over the years, [and] no
scintilla of their common parlance still attaches to them. Rohert B. Burctel

All numbers are imaginary. Even "zero" was contentious once.

The hottest contenders for numbers without purpose are probably the p-adic numbers (an extension of the rationals), and perhaps the expiry dates on army ration packs.

Michacl Hall

How confident do you feel working with imaginary and complex numbers?

A.
Complex numbers are easy!

c.
I'm starting to get used to it
i. I'm pretty confident

1. Complex numbers are difficult
F. I'm completely lost

What are the solutions to $\left(x^{2}-1\right)=-10$?

1. $x=3 i$

$$
\text { 1. } x=-3
$$

H. $x=-3 i$

1. None of the above

What is a solution to $(x-3)^{2}=-4$?

$$
\text { A. } x
$$

$$
\text { B. } x=3
$$

$$
\text { B. } x=5 i
$$

$$
\prod_{x} x=3-2 i
$$

E. $x=2+3 x$

Complex Numbers

Complex numbers are a natural extension of the real numbers, able to handle a wide variety of problems in physics and engineering.

Real unit:	1
Imaginary unit:	$i=\sqrt{-1}$

A complex number has both real and imaginary parts, where a and b are real numbers.

$$
z=a+i b
$$

A complex number z can be broken into real and imaginary parts, a and $i b$

An imaginary number has no real part
A real number has no imaginary part

The Complex Plane A 2D extension of the number line

> What is
> $(2+2 i)-(5-3 i) ?$

1. $7+5 i$

$$
\text { B. } 7-i
$$

$$
\text { 1. } 3-5 i
$$

E.

None of the above

For $z=a+i b$, where is $-z$ on the complex plane?

D.

Not enough information

The Complex Conjugate

The complex conjugate is the complex number with the imaginary part negated,

$$
\text { If } \mathrm{z}=a+i b \text {, then } \bar{z}=a-i b
$$

We can use this to find various properties of the complex number:

$$
\begin{gathered}
\operatorname{Re}(z)=\frac{z+\bar{z}}{2}=a \\
\operatorname{Im}(z)=-i \times \frac{(z-\bar{z})}{2}=b \\
\operatorname{Abs}(z)=\sqrt{z \bar{z}}==\sqrt{a^{2}+b^{2}}
\end{gathered}
$$

What is the complex conjugate of $(3+2 i) \times(4-i)$?

$14-5 i$

1. $14+5 i$

$$
\begin{aligned}
(3+2 i)(4-i) & =12-3 i+8 i-2 i^{2} \\
10-5 i & =14+5 \mathbf{i} \\
\frac{(3+2 i)(4-i)}{} & =14-5 \mathbf{i}
\end{aligned}
$$

$$
\begin{aligned}
\overline{(3+2 i)(4-i)} & =(\mathbf{3}-\mathbf{2 i})(4+i) \\
10+5 i & =\mathbf{1 2}-\mathbf{3 i}+\mathbf{8 i}-\mathbf{2} i^{2} \\
& =\mathbf{1 4}+\mathbf{5 i}
\end{aligned}
$$

E. None of the above

$$
\begin{gathered}
\text { What is } \\
2 \div(1+3 i) ?
\end{gathered}
$$

1. $3+i$

B. $\frac{3+1}{5}$
F. $\frac{1+3 i}{5}$

$$
\text { D. } \frac{1-3 i}{5}
$$

For $z=a+i b$, where is it's complex conjugate \bar{z} on the complex plane?

For $z=a+i b$, where is $-\bar{z}$ on the complex plane?

What is $z=a+i b$ equivalent to?

1. $\cos \theta+i \sin \theta$
2. $|z|(\sin \theta+i \cos \theta)$
F. $|z|(\cos \theta \times i \sin \theta)$

Polar Form

NUMBERS OF THE FORM $n \sqrt{-1}$ ARE "IMAGINARY", BUT CAN STILL BE USED IN EQUATIONS

Allows us to use all the nice features of exponentials in trig and wave problems

$$
\frac{d}{d x} e^{i a x}=i a e^{i a x}
$$

$$
e^{i x} e^{i y}=e^{i(x+y)}
$$

Using the complex plane, we can re-express any complex number as:

$$
z=a+i b=|z|(\cos \theta+i \sin \theta)
$$

Using Euler's equation, we write this in polar form as

$$
z=|z|(\cos \theta+i \sin \theta)=|z| e^{i \theta}
$$

What is the complex conjugate \bar{z} of $z=|z| e^{i \theta}$

 in polar form?1. $\bar{z}=|z| e^{i \theta}$

$$
\text { B. } \bar{z}=-|z| e^{i \theta}
$$

$$
\text { 1. } \bar{z}=-|z| e^{-i \theta}
$$

E. None of the above

What is the inverse z^{-1} of $z=|z| e^{i \theta}$ in polar form?

1. $z^{-1}=\frac{1}{|z|} e^{i \theta}$
2. $z^{-1}=-\frac{1}{|z|} e^{i \theta}$
Ю. $z^{-1}=\frac{1}{|z|} e^{-i \theta}$

$$
\text { |. } z^{-1}=-\frac{1}{|z|} e^{-i \theta}
$$

E. None of the above

How can we find θ when given $z=a+i b$ in polar form?

1. $\theta=|\mathrm{z}| \tan ^{-1} \frac{a}{\mathrm{~b}}$
2. $\theta=\tan \frac{\mathrm{b}}{\mathrm{a}}$
F. $\theta=\tan \frac{\mathrm{a}}{\mathrm{b}}$

$$
\text { 1. } \theta=\tan ^{-1} \frac{a}{\mathrm{~b}}
$$

$$
\text { 5. } \theta=\tan ^{-1} \frac{\mathrm{~b}}{\mathrm{a}}
$$

Complex Numbers

Write the following in a+ib form and in polar form

$$
\frac{\dot{2}-\sqrt{3}}{1+2}
$$

In a+ib form,

$$
\frac{(1-\sqrt{3})+i(1+\sqrt{3})}{2}
$$

In polar form,
$\sqrt{2} e^{i \frac{7 \pi}{12}}$

$$
\frac{1}{2}(1-\sqrt{3})=\sqrt{2} \cos \frac{7 \pi}{12}
$$

$$
\frac{1}{2}(1+\sqrt{3})=\sqrt{2} \sin \frac{7 \pi}{12}
$$

What is the polar form of $z=2-2 i$?

A. $z=2 \pi \sqrt{4} \frac{s}{4}$
C. $x=-2 \pi \sqrt{n} \frac{n}{7}$

$$
\text { 1. } z=2 \sqrt{2} e^{-i \frac{\pi}{4}}
$$

C: The same number, but not in pure polar form

$$
\text { B. } z=2 \sqrt{2} e^{i \frac{\pi}{4}}
$$

None of the above

What is the polar form of
 $z=-2-2 i$?

$$
\text { 1. } z=2 \sqrt{2} e^{-i \frac{\pi}{4}}
$$

$$
\text { B. } z=2 \sqrt{2} e^{i \frac{\pi}{4}}
$$

$$
\boldsymbol{F}_{\mathbf{n}} z=2 \sqrt{2} e^{i \frac{3 \pi}{4}}
$$

$$
\text { 1. } z=2 \sqrt{2} e^{i \frac{5 \pi}{4}}
$$

Now we're all tigers

Calvin and Hobbes

by Bill Watterson

Question Break

TEHTOiS\& ITUEMAMEEBRA

How confident do you feel working with vectors and matrices?

1. Linear algebra is easy!
2. I'm pretty confident
3. Linear algebra is difficult

I'm starting to get used to it
c.

Vectors

Vectors are an ordered set of numbers, mathematically.
In physics, we often interpret them as a number with direction
More abstractly, each entry is a distinguishable component

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\underset{y}{v_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+v_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
$$

Math with Vectors

Vectors respect addition and scalar multiplication

$$
\begin{gathered}
\vec{v}+\vec{w}=\left[\begin{array}{l}
v_{1}+w_{1} \\
v_{2}+w_{2}
\end{array}\right] \\
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \\
\vec{w}=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \\
\hdashline \vec{v} /\left[\begin{array}{l}
\vec{v}+\vec{w} \\
\vec{w}
\end{array}\right]
\end{gathered}
$$

What is $\left[\begin{array}{c}4 a \\ 6 i \\ 2\end{array}\right]+\left[\begin{array}{c}12 b \\ \pi \\ \sin \theta\end{array}\right]$

1. $\left[\begin{array}{c}4 a+6 i+12 b \\ 12 b+\pi+\sin \theta\end{array}\right]$

F. $\left[\begin{array}{c}4 a+6 i \\ 12 b+\pi \\ 2+\sin \theta\end{array}\right]$
2. $4 a+12 b+\pi+2+\sin \theta+6 i$
E. No answer exists

What is $\left[\begin{array}{c}4 a \\ 6 i \\ 2\end{array}\right]+\left[\begin{array}{c}12 b \\ \pi\end{array}\right]$
I. $\left[\begin{array}{c}4 a+12 b \\ \pi+6 i\end{array}\right]$

1. $\left[\begin{array}{c}4 a+12 b \\ \pi+6 i \\ 2\end{array}\right]$
F. $\left[\begin{array}{l}8 a+24 b \\ 2 \pi+12 i\end{array}\right]$
|. $4 a+12 b+\pi+2+6 i$

A Vector Glossary

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

The dimensionality of a vector is the number of elements it has

$$
\operatorname{Dim}(\vec{v})=2 \times 1
$$

The absolute value or norm of a vector is it's length
A unit vector is a vector with a norm of 1

$$
\begin{gathered}
\|\vec{v}\|^{2}=\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2} \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}
\end{gathered}
$$

The conjugate transpose of a vector switches rows and columns and takes the complex conjugate of all elements

$$
\vec{v}^{\dagger}=\left[\begin{array}{ll}
\bar{v}_{1} & \bar{v}_{2}
\end{array}\right]
$$

The dot or inner product measures the projection of one vector onto another, and measures how alike two vectors are

$$
\vec{v} \cdot \vec{w}=\vec{v}^{\dagger} \vec{w}=\sum_{j} \bar{v}_{j} w_{j}
$$

Two perpendicular vectors have an inner product of zero, and are called orthogonal. If they are also unit vectors, they form an orthonormal pair

$$
\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\},\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}
$$

What is the inner product of $\vec{v}=\left[\begin{array}{c}4 a \\ 6 i \\ 2\end{array}\right], \quad \vec{w}=\left[\begin{array}{c}12 b \\ \pi \\ \sin \theta\end{array}\right]$

1. $576 a b \pi i \sin \theta$

$$
\text { B. }\left[\begin{array}{c}
4 a+12 b \\
\pi+6 i \\
2+\sin \theta
\end{array}\right]
$$

$48 a b-6 \pi i+2 \sin \theta$
D. $4 a+12 b+\pi+2-6 i+\sin \theta$
E. No answer exists

What is the inner product of $\vec{v}=\left[\begin{array}{c}2 \\ -1 \\ i\end{array}\right], \quad \vec{w}=\left[\begin{array}{l}i \\ 0 \\ 2\end{array}\right]$

1. $0 \quad \vec{v} \cdot \vec{w}=\vec{v}^{\dagger} \vec{w}=\sum_{j} \bar{v}_{j} w_{j} \quad$ 1. $\quad-1+4 i$
F. $4 i$

E. No answer exists

Bases

A $\underline{\text { basis }}$ is an alphabet to make other vectors with

$$
\vec{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Any orthonormal pair forms an orthonormal basis in 2D, and any vector can be broken down into components in that basis

$$
=\frac{x+y}{\sqrt{2}}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]+\frac{x-y}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
$$

More generally, for d dimensions, any set of d linearly independent vectors form a basis

$$
\hat{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \hat{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \hat{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Which set of vectors forms an orthonormal basis?

$$
\begin{aligned}
& A=\left\{\left[\begin{array}{l}
0 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right. \\
& \text { Not normalized! }\left.B=\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\} \quad C=\left\{\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right\} \\
& \text { Not orthogonal! }
\end{aligned}
$$

1. Only A
2. Only B

Only C

1. A and C
F. All are orthonormal bases

Which of the following vectors is not the same as the others?

$$
\left.\begin{array}{l}
1 \times \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+1 \times \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+0 \times\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
1
\end{array}\right) 0 \times \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+0 \times \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+\sqrt{2} \times\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

E. All are the same vector

Matrices

A matrix is a recipe for manipulating vectors
For example, the rotation matrix \boldsymbol{R} rotates a vector

$$
M \vec{v}=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33} \\
m_{41} & m_{42} & m_{43}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$$
R\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

What is the size of this matrix?

$$
M=\left[\begin{array}{ccccc}
0 & 1 & -1 & 3 & -1 \\
2 & -2 & 1 & 0 & 9 \\
1 & 3 & 2 & 8 & -4
\end{array}\right]
$$

1. 2×1

E
None of the above

Which addition is not allowed?

$$
M=\left[\begin{array}{cccc}
0 & 1 & -1 & 3 \\
2 & -2 & 1 & 0 \\
1 & 3 & 2 & -4
\end{array}\right] \quad N=\left[\begin{array}{cc}
1 & 3 \\
-1 & 6 \\
0 & 8 \\
4 & 3
\end{array}\right] \quad P=\left[\begin{array}{lll}
5 & 4 & 3 \\
2 & 1 & 0
\end{array}\right]
$$

1. $M+N$

$$
\text { 1. } M+P
$$

Ю. $N+P$

$$
\text { 1. } M+N+P
$$

None are allowed

Which multiplication is not allowed?

MN

$$
P=\left[\begin{array}{lll}
5 & 4 & 3 \\
2 & 1 & 0
\end{array}\right]
$$

A. .

C. w
D. wo
E. None are allowed

What is $M \times N$? $\quad M=\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & -2 & 1 \\ 1 & 3 & 2\end{array}\right] \quad N=\left[\begin{array}{cc}-2 & 1 \\ -1 & 3 \\ 1 & -1\end{array}\right]$
A. $\left[\begin{array}{cc}0 & 1 \\ -2 & - \\ 1 & -8 \\ -3\end{array}\right]$
B. $\left[\begin{array}{lll}{\left[\begin{array}{ll}-2 & 1 \\ 1 & -1 \\ -6 & -3\end{array}\right]} \\ -3\end{array}\right]$
F. $\left[\begin{array}{ccc}-2 & -1 & -3 \\ 4 & -3 & 8\end{array}\right]$

E. None of the above

What is $M \times N$?

$$
M=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad N=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

A. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

E. $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

$$
\text { D. }\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

E. None of the above

What is the transpose of $M ? \quad M=\left[\begin{array}{ccccc}0 & 1 & -1 & 3 & -1 \\ 2 & -2 & 1 & 0 & 9 \\ 1 & 3 & 2 & 8 & -4\end{array}\right]$

$$
\begin{array}{ll}
M^{T}=\left[\begin{array}{ccc}
0 & 2 & 1 \\
1 & -2 & 3 \\
-1 & 1 & 2 \\
3 & 0 & 8 \\
-1 & 9 & -4
\end{array}\right] & \text { D. } M^{T}=\left[\begin{array}{ccc}
0 & -2 & -1 \\
-1 & 2 & -3 \\
1 & -1 & -2 \\
-3 & 0 & -8 \\
1 & -9 & 4
\end{array}\right] \\
M^{T}=\left[\begin{array}{ccccc}
1 & 3 & 2 & 8 & -4 \\
2 & -1 & 1 & 0 & 9 \\
0 & 1 & -1 & 3 & -1
\end{array}\right] & \text { D. } M^{T}=\left[\begin{array}{ccc}
0 & 2 & 1 \\
1 & -2 & 3 \\
-1 & 1 & 2
\end{array}\right]
\end{array}
$$

E. None of the above

What is the conjugate transpose of M ?

$$
M=\left[\begin{array}{ccc}
1 & 3 i & 4 \\
3-i & e^{i \frac{\pi}{6}} & 0 \\
-2 i & 2+i & 1
\end{array}\right]
$$

J. $M^{\dagger}=\left[\begin{array}{ccc}1 & 3-i & -2 i \\ 3 i & e^{i \frac{\pi}{6}} & 2+i \\ 4 & 0 & 1\end{array}\right]$

母a $M^{\dagger}=\left[\begin{array}{ccc}1 & 3+i & 2 i \\ -3 i & e^{-i \frac{\pi}{6}} & 2-i \\ 4 & 0 & 1\end{array}\right]$
$\prod_{\text {a }} M^{\dagger}=\left[\begin{array}{ccc}1 & 3+i & 2 i \\ -3 i & e^{i \frac{\pi}{6}} & 2-i \\ 4 & 0 & 1\end{array}\right]$
E. None of the above

Eigenvectors

An eigenvector is a vector whose direction does not change after matrix multiplication.

$$
M \stackrel{\rightharpoonup}{v}=k \vec{v}
$$

Each matrix has its own set of eigenvectors.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\frac{1}{2} \times\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=1 \times\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=-1 \times\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]}
\end{aligned}
$$

Which is not an eigenvector of M ?

$$
M=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & -1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

a.

$\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 & \frac{1}{0} \\ \frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}\sqrt{2} \\ -1 \\ -\sqrt{2}\end{array}\right]$
a. 占
F. None of the above

Question Break

THLE POSTULAIES OF QuINTUW m:GIINICS

We have the ingredients,
let's make a stew

The Postulates of Quantum Mechanics

states

Measurements

Processes

Systems

Values

1) Quantum states are described by unit vectors in complex, potentially high-dimensional Hilbert spaces.
2) The probability of measuring a system in a given state is given by the absolute-value-squared of the inner product of the output state and the current state of the system. Immediately after the measurement, the wavefunction collapses into that state.
3) Valid quantum state transformations are given by unitary operations.
4)Separate quantum systems are described by the tensor product of the separate, individual Hilbert spaces.
4) Physical observables are represented by the eigenvalues of Hermitian Operators on the Hilbert space.

Quantum States

A state describes properties of a system Classical

A quantum state describes properties of a quantum system

Specifics Tomorrow!

Energy State

Electron Spin

Circuit QED Photon Polarization

Mutually Exclusive States

- Two states are mutually exclusive if they are:
- Distinguishable and impossible to confuse
- Cannot both occur at the same time

Classicall

O VS 1

Quxamturam
For example, consider electron spin
 Can only take one of two values
(O or \bigcirc)

Which of the following are NOT mutually exclusive?

1. Wearing Red Socks or Wearing a Blue Shirt

Can do both at the same time
F. Being in Toronto or Being in Montreal |. Having a Ball or Not Having a Ball
F. All of the above are mutually exclusive

States as Vectors

1) Quantum states are described by unit vectors in complex, potentially high-dimensional Hilbert spaces.

Consider electron spin
Can only take one of two values

We'll represent them as
a pair of orthogonal unit vectors

$$
v_{\circlearrowleft}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad v_{\circlearrowright}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

They're impossible to confuse!
A © electron has no \bigcirc component, just like an x -vector has no y-component

States as Kets

 quantum state a "qubit" Qubit = Quantum BitWe use a "ket" to denote a quantum state vector

We'll see this for numerous physical systems, but the end result is always the same:
Linear algebra is the rulebook for quantum mechanics

States as Kets

$$
|\psi\rangle=\vec{v}_{\psi}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

A "ket" is a column vector

For now,
think of each component as how alike the state is to each of the mutually exclusive options.

$$
\begin{aligned}
& |\psi\rangle=\left[\begin{array}{l}
0.97 \\
0.22
\end{array}\right] \text { Is more iliee }|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& |\psi\rangle=\left[\begin{array}{l}
0.26 \\
0.96
\end{array}\right] \text { Is more ilike }|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Bra-Ket Notation

$$
|\psi\rangle=\vec{v}_{\psi}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

A "ket" is a column vector

$\langle\psi|=\vec{v}_{\psi}^{\dagger}=\left[\begin{array}{ll}\bar{c}_{1} & \bar{c}_{2}\end{array}\right]$

A "bra" is it's conjugate transpose (row vector)

$$
\langle\phi \mid \psi\rangle=\vec{v}^{+} \vec{v}_{\psi}=\vec{v}_{\phi} \cdot \vec{v}_{\psi}
$$

A bra and a ket together provides the inner product or overlap of the two states

Bra-Ket Notation

Why do we bother?

Extends to systems with more than two dimensions

$$
\mathrm{HW} \mathrm{HW}
$$

e.g. Electron with two possible spins and two possible energies Photon with many possible positions

We can easily distinguish vectors, matrices, and numbers

Column Vector	$\|\psi\rangle$	$M\|\psi\rangle$
Row Vector	$\langle\psi\|$	$\langle\psi\| M^{\dagger}$
Scalar number	$\langle\phi \mid \psi\rangle$	$\langle\phi\| A\|\psi\rangle$
Matrix	$\|\phi\rangle\langle\psi\|$	M

[^0]
What kind of mathematical object is this?

$$
\langle\phi| M U_{f} M^{\dagger}|\psi\rangle\langle\gamma| H|\psi\rangle
$$

A number

A row vector

1. A column vector
E. None of the above

What kind of mathematical object is this?

$$
|\phi\rangle\langle\psi| U X U^{\dagger}|\gamma\rangle
$$

1. A matrix

A row vector
E. None of the above

Up next...

- The history of quantum mechanics, from ancient Greece to laser beams
- A Quantum History: this afternoon at 2:30 ET.
- Ask any questions about the problem set
- Problem Solving Session after A Quantum History
- We'll talk and see how we use the linear algebra rulebook to describe real quantum experiments
- Quantum Mechanics \& Polarization: tomorrow at 10:30 ET.

Question Break

Quantum Measurement atasams stued

$$
\begin{aligned}
& \text { The probability of measuring a system in a given state is given } \\
& \text { by the absolute-valuesquared of the inner product of the output } \\
& \text { state and the current state of the system. } \\
& |0\rangle=\left[\begin{array}{c}
1 \\
0
\end{array}\right] \\
& \text { Is it "o" or " } \mathbf{1} \text { "? } \\
& P(0)=|\langle 0 \mid 0\rangle|^{2}=1 \\
& P(1)=|\langle 1 \mid 0\rangle|^{2}=0
\end{aligned}
$$

Supernosition

What about this state?

It has both a " 0 " and a " 1 " component.

What does it mean?

Quantum Measurement

The probability of measuring a system in a given state is given by the absolute-value-squared of the inner product of the output state and the current state of the system.

$$
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad|+\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad|+\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Is it "o" or " 1 "?
$P(0)=|\langle 0 \mid 0\rangle|^{2}=1$
$P(1)=|\langle 1 \mid 0\rangle|^{2}=0$

Is it "o" or " 1 "?

$$
\begin{aligned}
& P(0)=|\langle 0 \mid+\rangle|^{2}=\frac{1}{2} \\
& P(1)=|\langle 1 \mid+\rangle|^{2}=\frac{1}{2}
\end{aligned}
$$

Is it "+" or "-"?

$$
P(+)=|\langle+\mid+\rangle|^{2}=1
$$

$$
P(-)=|\langle-\mid+\rangle|^{2}=0
$$

Superposition Bases

What about superpositions of superpositions?

How do we interpret it?

Quantum Superposition

The particle is both

$$
\text { "o" AND " } 1 "
$$

at the same time

Measurement Basis
 Defines which "question"
 I ask the particle

$$
\begin{aligned}
& |0\rangle=\frac{|+\rangle+|-\rangle}{\sqrt{2}} \\
& |1\rangle=\frac{|+\rangle-|-\rangle}{\sqrt{2}}
\end{aligned}
$$

The particle is both
"+" AND "-"
at the same time
BUT

When measured in the $0 / 1$ basis,
it will be found as
"o" OR " 1 "
randomly

BUT
When measured in the $+/$ - basis, it will be found as
"+" OR "-"
randomly

Superposition Bases

Superposition basis
 (X)

Computational
basis
(Z)

Superposition basis
(Y)

Measurement Bases

Z basis	X basis	Y basis
${ }^{10}$	$\|0\rangle=\|+\rangle+\|-\rangle$	$\|0\rangle=\|+i\rangle+\|-i\rangle$
\|1)	$\|1\rangle=\|+\rangle-\|-\rangle$	$\|1\rangle=\|+i\rangle-\|-i\rangle$
$1+\rangle=\|0\rangle+\|1\rangle$	1+)	
	1->	
$\left\|+{ }_{i}\right\rangle=\|0\rangle+i\|1\rangle$	$\|+i\rangle=\|+\rangle+i\|-\rangle$	$\left\|+{ }_{i}\right\rangle$
$\|-i\rangle=\|0\rangle-i\|1\rangle$	$\|-i\rangle=\|+\rangle-i\|-\rangle$	$\|-i\rangle$

In quantum computing,
there are many different questions I can ask my qubits.

Quantum vs. Classical

Question Break

Collapse

```
Immediately after the measurement,
the wavefunction collapses into that state
```

What's the probability of finding $|+\rangle$ in the state $|0\rangle$?

$$
|\langle 0 \mid+\rangle|^{2}=\frac{1}{2}
$$

What's the state after finding $|+\rangle$ in the state $|0\rangle$?

$$
|0\rangle
$$

What's the probability of finding $|\boldsymbol{\psi}\rangle$ in the state $\left|+_{i}\right\rangle$?

$$
|\psi\rangle=\cos \theta|0\rangle+e^{i \phi} \sin \theta|1\rangle
$$

Transformations

$$
\begin{aligned}
& \text { Valid quantum state transformations are } \\
& \text { given by unitary operations. } \\
& \qquad\|U \vec{v}\|=\|\vec{v}\| \\
& U^{\dagger} U=U U^{\dagger}=\mathbb{1}
\end{aligned}
$$

These are the operations which make sure that quantum states remain valid quantum states.

$$
\langle\psi| U^{\dagger} U|\psi\rangle=\langle\psi \mid \psi\rangle
$$

Maintains normalization

$$
\langle\phi| U^{\dagger} U|\psi\rangle=\langle\phi \mid \psi\rangle
$$

Maintains the inner product

Transformations

$|\psi\rangle=\cos \theta|0\rangle+e^{i \phi} \sin \theta|1\rangle$

$$
\langle\phi| U^{\dagger} U|\psi\rangle=\langle\phi \mid \psi\rangle
$$

- Can be considered as rotations in the Bloch sphere
- Any two orthogonal states remain orthogonal
- Any non-orthogonal states remain non-orthogonal

Matrices in Bra-Ket Notation

$$
\mathbb{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The identity matrix a.k.a. the do-nothing transformation

In bra-ket notation, we can see that it takes each state back to itself, thus doing *nothing* effectively.

This holds for any orthonormal basis.

$$
\text { If } \quad M=|+\rangle\left\langle+{ }_{i}\right|+|-\rangle\left\langle-{ }_{i}\right|
$$

What is $M\left|-{ }_{i}\right\rangle$?

A. $1+\rangle$

B. |->

C. $1+i\rangle$
D. $|-i\rangle$
E. $|0\rangle$

Matrices in Bra-Ket Notation

nот: $X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=|0\rangle\langle 1|+|1\rangle\langle 0|=|+\rangle\langle+|-|-\rangle\langle-|$
Same effect in a different basis

PHASE: $Z=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=|0\rangle\langle 0|-|1\rangle\langle 1|=|+\rangle\langle-|+|-\rangle\langle+|$

Matrices in Bra-Ket Notation

A quantum coin flip

Changes basis from Z to X and back again
A perfect example of a change-of-basis operation

Question Break

Composite Quantum Systems

Alice's Qubit $|0\rangle_{A}$

```
Separate quantum systems are described by the
    tensor product of the separate,
            individual Hilbert spaces.
```


Alice \& Bob's

 Two-Qubit System$$
|0\rangle_{A} \otimes|1\rangle_{B}=|01\rangle
$$

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

Bob's Qubit $|1\rangle_{B}$

Composite Quantum Systems

New Computational Basis

$$
|00\rangle=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad|01\rangle=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
|10\rangle=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad|11\rangle=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Composite Systems

We can use bra-ket notation to simplify composite system problems.

Observables

```
Physical observables are represented by the eigenvalues of
    Hermitian operators on the Hilbert space.
```

Essentially, while complex numbers and vectors are important for calculation, when we measure something in the lab, we get a real number out

A Hermitian operator is it's own conjugate transpose

$$
A=A^{\dagger}
$$

Basically the matrix equivalent of a "real number"
Implies that all of its eigenvalues are real numbers

Observables

We observe if an electron is in the ground state or the excited state
We assign different energies E to each state

$$
A=\left(E_{g}\right) \times|g\rangle\langle g|+\left(E_{e}\right) \times|e\rangle\langle e|
$$

Expected (average) value of the observable for different quantum states:

$$
\begin{aligned}
& \langle g| A|g\rangle=E_{g} \\
& \langle e| A|e\rangle=E_{e}
\end{aligned}
$$

$$
\langle+| A|+\rangle=\square ?
$$

The Postulates of Quantum Mechanics

$$
|\langle\psi \mid \psi\rangle|^{2}=1
$$

$$
P(\phi)=|\langle\phi \mid \psi\rangle|^{2}
$$

$$
|\psi\rangle_{1}=U_{1}|\psi\rangle_{0}
$$

$$
|\Psi\rangle_{A B}=|\psi\rangle_{A} \otimes|\phi\rangle_{B}
$$

$$
\langle A\rangle=\langle\psi| A|\psi\rangle
$$

1) Quantum states are described by unit vectors in complex, potentially high-dimensional Hilbert spaces.
2) The probability of measuring a system in a given state is given by the absolute-value-squared of the inner product of the output state and the current state of the system. Immediately after the measurement, the wavefunction collapses into that state.
3)Valid quantum state transformations are given by unitary operations.
4)Separate quantum systems are described by the tensor product of the separate, individual Hilbert spaces.
3) Physical observables are represented by the eigenvalues of Hermitian Operators on the Hilbert space.

But is it real?

Tomorrow...

Composite Operations

What if Alice and Bob perform unitary transformations on their states?

Alice \& Bob's Two-Qubit System

$$
U|\psi\rangle_{A} \otimes V|\phi\rangle_{B}
$$

Alice's Qubit

$$
=(U \otimes V)\left(|\psi\rangle_{A} \otimes|\phi\rangle_{B}\right)
$$

Bob's Qubit $V|\phi\rangle_{B}$

$$
U \otimes V=\left[\begin{array}{llll}
u_{1} v_{1} & u_{1} v_{2} & u_{2} v_{1} & u_{2} v_{2} \\
u_{1} v_{3} & u_{1} v_{4} & u_{2} v_{3} & u_{2} v_{4} \\
u_{3} v_{1} & u_{3} v_{2} & u_{4} v_{1} & u_{4} v_{2} \\
u_{3} v_{3} & u_{3} v_{4} & u_{4} v_{3} & u_{4} v_{4}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} V & u_{2} V \\
u_{3} V & u_{4} V
\end{array}\right]
$$

Composite Systems

We can use bra-ket notation to simplify composite system problems.

Find the state
in the computational basis

Find the matrix

$$
Z_{A} \otimes Z_{B}
$$

$$
|00\rangle\langle 00|-|01\rangle\langle 01|-|10\rangle\langle 10|+|11\rangle\langle 11|
$$

2
More details when
discussing entanglement this Friday!

[^0]: When the brakets are closed, we get a number out

